366 research outputs found

    Effects of Chronic Morphine Treatment on Β-Endorphin-Related Peptides in the Caudal Medulla and Spinal Cord

    Full text link
    The effects of chronic morphine treatment on Β-endorphin (ΒE)-immunoreactive (ΒE-ir) peptide levels were determined in the rat caudal medulla and different areas of the spinal cord. Seven days of morphine pelleting had no effect on total ΒE-ir peptides in the caudal medulla. In contrast, it significantly increased ΒE-ir peptide concentrations in the cervical and thoracic regions of the spinal cord compared with placebo-pelleted controls, whereas in the lumbosacral region this trend did not reach statistical significance. Injections of the opiate receptor antagonist naloxone 1 h before the rats were killed had no effect on the morphine-induced increases in the cord. Chromatographic analyses revealed that enzymatic processing of ΒE-related peptides in the spinal cord seemed unaffected by the morphine and/or naloxone treatments. In light of previous data showing that morphine down-regulates ΒE biosynthesis in the hypothalamus, the present results suggest that the regulation of ΒE-ir peptides in the spinal cord is distinct from that found in other CNS areas. These data provide support for previous results suggesting that ΒE-expressing neurons may be intrinsic to the spinal cord.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65660/1/j.1471-4159.1993.tb03518.x.pd

    Pro-opiomelanocortin mRNA and peptide co-expression in the developing rat pituitary

    Full text link
    Pro-opiomelanocortin (POMC) is synthesized in both the pituitary gland and the brain. Various peptide products of this precursor, namely beta-endorphin, ACTH and alpha-MSH are co-localized in the anterior lobe corticotrophs, all intermediate lobe cells and in hypothalamic neurons. Messenger RNA (mRNA) for POMC has further been shown to exist in these tissues. In this study, we have shown that POMC mRNA, and peptide accumulation as detected by in situ hybridization and immunocytochemistry, respectively, occur simultaneously within the rat pituitary gland during ontogeny and that their maturation occurs in parallel during prenatal and early postnatal development.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29476/1/0000562.pd

    Anatomy of the CNS opioid systems

    Full text link
    The amino acid sequences of the three endogenous opioid peptide precursors are known, and the anatomical distribution of the opioid peptides has been studied extensively. This report summarizes these anatomical studies and looks at the problems that result from the biochemical relatedness of the precursors. We also discuss the relationship of opioid systems to opioid receptors, and the use of anatomical studies to derive new hypotheses of opioid function and provide dynamic measures of opioid neural activity, especially via specific mRNA quantitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25839/1/0000402.pd

    Dynorphin is located throughout the CNS and is often co-localized with alpha-neo-endorphin

    Full text link
    The opioid peptide dynorphin has been described as widely distributed in CNS when measured by RIA. Our previous immunohistochemical studies have only demonstrated dynorphin cells as those containing AVP. We now report the specific localization of dynorphin throughout the neuraxis. Further, dynorphin and alpha-neo-endorphin have been co-localized to the same magnocellular neurosecretory cells in hypothalamus. We report agreement with the findings of others and extend them to include a cell group in dorsomedial hypothalmus, further strengthening the association between dynorphin and alpha-neo-endorphin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23834/1/0000073.pd

    Dynorphin immunocytochemistry in the rat central nervous system

    Full text link
    The distribution of dynorphin in the central nervous system was investigated in rats pretreated with relatively high doses (300-400 [mu]g) of colchicine administered intracerebroventricularly. To circumvent the problems of antibody cross-reactivity, antisera were generated against different portions as well as the full dynorphin molecule (i.e., residues 1-13, 7-17, or 1-17). For comparison, antisera to [Leu]enkephalin (residues 1-5) were also utilized. Dynorphin was found to be widely distributed throughout the neuraxis. Immunoreactive neuronal perikarya exist in hypothalamic magnocellular nuclei, periaqueductal gray, scattered reticular formation sites, and other brain stem nuclei, as well as in spinal cord. Additionally, dynorphin-positive fibers or terminals occur in the cerebral cortex, olfactory bulb, nucleus accumbens, caudate-putamen, globus pallidus, hypothalamus, substantia nigra, periaqueductal gray, many brain stem sties, and the spinal cord. In many areas studied, dynorphin and enkephalin appeared to form parallel but probably separate anatomical systems. The results suggest that dynorphin occurs in neuronal systems that are immunocytochemically distinct from those containing other opioid peptides.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23823/1/0000062.pd

    Proopiomelanocortin peptide immunocytochemistry in rhesus monkey brain

    Full text link
    The immunocytochemical distribution of Proopiomelanocortin (POMC) peptides ([beta]-endorphin, ACTH, [alpha]-MSH, 16K fragment) was studied in the brain of the rhesus monkey (Macaca mulatta). Some animals were administered colchicine intracerebroventricularly prior to sacrifice to enhance the visualization of perikaryal immunoreactivity. Immunoreactive perikarya are localized to hypothalamic infundibular nucleus, giving rise to several distinct projections. Rostral projections extend through midline diencephalic and preoptic areas, and enter the telencephalon. Along this course, immunoreactive fibers are seen in midline hypothalamic and preoptic nuclei, nucleus of the diagonal band, olfactory tubercle, nucleus accumbens, bed nucleus of stria terminalis, septum, and other limbic structures in telencephalon. Caudal to the anterior commissure, some fibers ascend dorsally to enter the midline thalamus, which they innervate. Lateral projections of the infundibular perikarya course through the medial-basal hypothalamus, dorsal to the optic tracts, and enter the amygdala region where they innervate more medially situated amygdaloid nuclei. Caudal projections of the POMC neurons also extend through midline diencephalon, some coursing along a periventricular path to innervate midline hypothalamic and thalamic nuclei. This projection extends into the mesencephalic substantia grisea centralis and may also contribute to the innervation of more dorsally situated nuclei in the pons and medulla, such as the parabrachial nuclei and nucleus tractus solitarius. Other caudal projections originating in the hypothalamus course through the ventral tegmentum of mesencephalon and pons and may contribute to the innervation of midline raphe and other ventrally situated nuclei in the pons and medulla. The distribution of immunoreactive perikarya and fibers in the brain of rhesus monkey is strikingly similar to that found in the rat brain. However, subtle differences appear to exist in the innervation patterns of particular brain regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24629/1/0000040.pd

    Ethical challenges in preclinical Alzheimer's disease observational studies and trials:Results of the Barcelona summit

    Get PDF
    AbstractAlzheimer's disease (AD) is among the most significant health care burdens. Disappointing results from clinical trials in late-stage AD persons combined with hopeful results from trials in persons with early-stage suggest that research in the preclinical stage of AD is necessary to define an optimal therapeutic success window. We review the justification for conducting trials in the preclinical stage and highlight novel ethical challenges that arise and are related to determining appropriate risk-benefit ratios and disclosing individuals' biomarker status. We propose that to conduct clinical trials with these participants, we need to improve public understanding of AD using unified vocabulary, resolve the acceptable risk-benefit ratio in asymptomatic participants, and disclose or not biomarker status with attention to study type (observational studies vs clinical trials). Overcoming these challenges will justify clinical trials in preclinical AD at the societal level and aid to the development of societal and legal support for trial participants

    Pre- and Posttranslational Regulation of Β-Endorphin Biosynthesis in the CNS: Effects of Chronic Naltrexone Treatment

    Full text link
    There appear to be two anatomically distinct Β-endorphin (ΒE) pathways in the brain, the major one originating in the arcuate nucleus of the hypothalamus and a smaller one in the area of the nucleus tractus solitarius (NTS) of the caudal medulla. Previous studies have shown that these two proopiomelanocortin (POMC) systems may be differentially regulated by chronic morphine treatment, with arcuate cells down-regulated and NTS cells unaffected. In the present experiments, we examined the effects of chronic opiate antagonist treatment on ΒE biosynthesis across different CNS regions to assess whether the arcuate POMC system would be regulated in the opposite direction to that seen after opiate agonist treatment and to determine whether different ΒE-containing areas might be differentially regulated. Male adult rats were administered naltrexone (NTX) by various routes for 8 days (subcutaneous pellets, osmotic minipumps, or repeated intraperitoneal injections). Brain and spinal cord regions were assayed for total ΒE-ir, different molecular weight immunoreactive Β-endorphin (ΒE-ir) peptides, and POMC mRNA. Chronic NTX treatment, regardless of the route of administration, reduced total ΒE-ir concentrations by 30–40% in diencephalic areas (the arcuate nucleus, the remaining hypothalamus, and the thalamus) and the midbrain, but had no effect on ΒE-ir in the NTS or any region of the spinal cord. At the same time, NTX pelleting increased POMC mRNA levels in the arcuate to ∼ 140% of control values. These data suggest that arcuate POMC neurons are up-regulated after chronic NTX treatment (whereas NTS and spinal cord systems remain unaffected) and that they appear to be under tonic inhibition by endogenous opioids. Chromatographic analyses demonstrated that, after chronic NTX pelleting, the ratio of full length ΒE 1–31 to more processed ΒE-ir peptides (i.e., ΒE 1–27 and ΒE 1–26 ) tended to increase in a dose-dependent manner in diencephalic areas. Because ΒE 1–31 is the only POMC product that possesses opioid agonist properties, and ΒE 1–27 has been posited to function as an endogenous anatgonist of ΒE 1–31 , the NTX-induced changes in the relative concentrations of ΒE 1–31 and ΒE 1–27 /ΒE 1–26 may represent a novel regulatory mechanism of POMC cells to alter the opioid signal in the synapse.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65603/1/j.1471-4159.1993.tb05820.x.pd

    The association of circulating amylin with β-amyloid in familial Alzheimer's disease.

    Get PDF
    INTRODUCTION: This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD). METHODS: Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats. RESULTS: Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding. DISCUSSION: These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms
    corecore